All Topics

DA-45 - GIS&T in Business

Geographic Information Systems and Technology are utilized extensively in the business sector and have become a strategic element for competition and partnering.  Although the traditional digital map layers and tables remain at the core of business GIS, the spatial architecture in firms now includes location analytics, location intelligence, AI, machine learning, imagery, social media linkages.  Cloud-based solutions provide platform flexibility, centralized data, and potential to roll out user-friendly webGIS across large segments of business users and customers. GIS is well suited to the digital transformations that are essential for firms, large and small.  With these advances, GIS has become prominent and its function has moved upwards in companies’ organizational hierarchies, with enterprise GIS even being recognized in the C-suite.  UPS is an example in which GIS is now a critical corporate competitive factor. In spite of these successes, a gap remains in the supply of skilled spatial workforce for companies. Business schools can contribute by changing by school leadership “getting it” about spatial, bringing GIS into the mainstream curricula, developing training for business faculty in teaching, conducting research in location analytics, and populating student body and alumni base with knowledge and enthusiasm for spatial thinking and management.

DA-13 - GIS&T in Criminal Justice and Law Enforcement

Linking crime and place has been the objective of crime mapping since the early nineteenth century. Contemporary scholars have since investigated spatio-temporal crime patterns to explain why crime concentrates in certain places during certain times. Collectively, this body of research has identified various environmental and situational factors that contribute to the formation of crime hot spots and spawned widespread crime prevention and reduction strategies commonly referred to as place-based policing.  Environmental criminology guides the bulk of this crime-and-place research and provides a means for interpreting place and crime. The chapter details theories behind place-based policing, examples of place-based policing strategies that leverage geographic information science and its associated technologies (GIS&T), and relevant data visualization tools used by law enforcement to implement place-based strategies to address crime.

DA-47 - GIS&T in International Affairs

GIS applications within the International Affairs domain are vast, and they include: the analysis and representation of flows and stops of people, resources, and capital across borders, humanitarian assistance, war, conflict, and surveillance, and analysis of border-crossing spatial phenomena such as natural disasters and climate change.

Due to the wide range of potential thematic data, GIS for International Affairs should be a balance of hands-on practical application skills and critical thinking about spatial concepts of scale, boundaries, borders, and flows. GIS scholars and practitioners in this domain should learn to think critically about how and where spatial data is created, the people and cultures impacted by spatial data-driven decisions, and the equity of who is involved in such decisions. Students should learn how spatial data is created, how major datasets in the field are built, and how to design datasets during fieldwork for robust spatial analysis. Through all of this, critical thinking around which people and places are counted and represented should be maintained.

GIS in International Affairs must always contend with the colonial history of cartography, seeking now to understand how modern-day spatial technologies are always constituted by and embedded in constructions of power.

DA-33 - GIS&T in Urban and Regional Planning

Professionals within the urban and regional planning domain have long utilized GIS&T to better understand cities through mapping urban data, representing new proposals, and conducting modeling and analysis to help address urban problems. These activities include spatial data collection and management, cartography, and a variety of applied spatial analysis techniques. Urban and regional planning has developed the sub-fields of planning support systems and Geodesign, both of which describe a combination of technologies and methods to incorporate GIS&T into collaborative planning contexts. In the coming years, shifting patterns of global urbanization, smart cities, and urban big data present emerging opportunities and challenges for urban planning professionals.

KE-24 - GIS&T Positions and Qualifications

Workforce needs tied to geospatial data continue to evolve.  Along with expansion in the absolute number of geospatial workers employed in the public and private sectors is greater diversity in the fields where their work has become important.  Together, these trends generate demand for new types of educational and professional development programs and opportunities. Colleges and universities have responded by offering structured academic programs ranging from minors and academic certificates to full GIS&T degrees.  Recent efforts also target experienced GIS&T professionals through technical certifications involving software applications and more comprehensive professional certifications designed to recognize knowledge, experience, and expertise.

KE-12 - GIS&T Project Planning and Management

GIS&T project planning and management falls under the broader category of project management (PM) in general and information technology (IT) PM in particular, providing a rich background and guidelines that are stewarded by associations and their certifications. The lifecycle of a project or its component phases involves a number of process groups involving a series of actions leading to a result that are sequenced in the following manner: initiating, planning, executing and controlling, and closing. Effective project planning and management requires understanding of its knowledge areas in the project management body of knowledge (PM BoK), which include integration, scope, time, cost, quality, human resource, communications, risk, procurement, and stakeholder management. Numerous tools and techniques are available to assist the project manager in planning, executing, and controlling these efforts, some of which are specific to GIS&T projects. The distinctiveness of GIS&T project planning and management lies in an understanding of the uniqueness, overlap and connections that exist between the PM BoK and the GIS&T BoK, both of which have achieved new levels of maturity in recent decades. 

AM-81 - GIS-Based Computational Modeling

GIS-based computational models are explored. While models vary immensely across disciplines and specialties, the focus is on models that simulate and forecast geographical systems and processes in time and space. The degree and means of integration of the many different models with GIS are covered, and the critical phases of modeling: design, implementation, calibration, sensitivity analysis, validation and error analysis are introduced. The use of models in simulations, an important purpose for implementing models within or outside of GIS, is discussed and the context of scenario-based planning explained. To conclude, a survey of model types is presented, with their application methods and some examples, and the goals of modeling are discussed.

AM-22 - Global Measures of Spatial Association

Spatial association broadly describes how the locations and values of samples or observations vary across space. Similarity in both the attribute values and locations of observations can be assessed using measures of spatial association based upon the first law of geography. In this entry, we focus on the measures of spatial autocorrelation that assess the degree of similarity between attribute values of nearby observations across the entire study region. These global measures assess spatial relationships with the combination of spatial proximity as captured in the spatial weights matrix and the attribute similarity as captured by variable covariance (i.e. Moran’s I) or squared difference (i.e. Geary’s C). For categorical data, the join count statistic provides a global measure of spatial association. Two visualization approaches for spatial autocorrelation measures include Moran scatterplots and variograms (also known as semi-variograms).

CP-23 - Google Earth Engine

Google Earth Engine (GEE) is a cloud-based platform for planetary scale geospatial data analysis and communication.  By placing more than 17 petabytes of earth science data and the tools needed to access, filter, perform, and export analyses in the same easy to use application, users are able to explore and scale up analyses in both space and time without any of the hassles traditionally encountered with big data analysis.  Constant development and refinement have propelled GEE into one of the most advanced and accessible cloud-based geospatial analysis platforms available, and the near real time data ingestion and interface flexibility means users can go from observation to presentation in a single window.

PD-13 - GPU Programming for GIS Applications

Graphics processing units (GPUs) are massively parallel computing environments with applications in graphics and general purpose programming. This entry describes GPU hardware, application domains, and both graphics and general purpose programming languages.